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Stabilization of cationic intermediates as gold(I)-carbenoids is
proposed to be essential in a variety of gold(I)-catalyzed cycloi-
somerization reactions.1,2 In an effort to gain further insight into
the impact of this stabilization, we were inspired by parallels in
the reactivity of gold-complexed allenes and allyl cations3 to
consider the stepwise reactions of these species with nucleophilic
olefins (eq 1). Accordingly, we envisioned that addition of the
alkene to a gold(I)-activated allene would generate intermediate1.
In analogy to the formal cycloadditions of alkenes and allyl cations,4

we hypothesized that the stability of the subsequent cationic species
would determine which cycloadduct formed. For example, cy-
clobutane3 would be produced by intramolecular trapping of
cationic intermediate1 to generate cation2 or from its direct
reaction with the carbon-gold bond.5,6 Alternatively, a [3 +
2]-cycloaddition would arise via carbocation4 which could be
stabilized as carbene resonance structure5.7

To this end, reaction of 1,6-allenene6 with 5 mol % of Ph3-
PAuCl and AgBF4 in 0.1 M CH2Cl2 cleanly afforded 82% yield of
[2 + 2]-cycloadduct78 (Table 1, entry 1). Under these conditions,
a variety of aryl-substituted alkenes underwent the gold(I)-catalyzed
intramolecular [2+ 2]-cycloaddition with allenes (Table 1).9 For
example bicyclo-[3.2.0] carbocycle15 was formed in 80% yield
from allenene14 that does not possess agem-dialkyl group in the
tether (entry 5). Other C-C double bonds within the substrate do
not compete with or inhibit the desired reaction (entry 2). Additional
substitution at the distal position of the allene does not impact the
course of the cycloaddition (entries 6 and 7). Notably, trisubstituted
olefin 20 underwent gold(I)-catalyzed [2+ 2]-cycloaddition,
furnishing cyclobutane21 possessing an all-carbon quaternary
center (entry 8). The diastereoselectivity relative to substituents on
the tether was also examined. While substrate22 having an allylic
methyl afforded23 in 85% yield and 6:1 dr (entry 9), allenene24
having a methyl substituent at the allenic position afforded25 as a
single diastereomer (entry 10). Importantly, alkylidene cyclobutane
278 was produced as a single olefin isomer from the gold-catalyzed
cycloaddition of disubstituted allenene26 (entry 11).

With these results in hand, we examined the recently developed
chiral dinuclear gold(I)-biarylphosphine complexes10 as catalysts
for an enantioselective [2+ 2]-cycloaddition (Table 2). To this
end, reaction of allenene29with the catalyst generated in situ from
3 mol % of (R)-DTBM-SEGPHOS(AuCl)2 (28) and 6 mol % of
AgBF4 afforded cyclobutane30 in 92% yield and 95% ee (Table
2, entry 1).11 The gold-catalyzed reaction provided cycloadduct17
with excellent enantioselectivity from allene16 that is substituted
at the distal carbon. Additionally, excellent enantioselectivity was

obtained in the cycloaddition of allenenes containing a variety of
styrenyl aryl groups (entries 5-7).

The mechanistic hypothesis presented in eq 1 suggests that the
gold(I)-catalyzed cycloaddition proceeds through a stepwise mech-
anism involving a series of carbocationic intermediates. In accord
with a stepwise mechanism involving a benzylic cation, cyclobutane
30was formed from the gold-catalyzed cycloaddition oftrans- and
cis-alkenes29 and37 (eq 2). Moreover, gold(I)-catalyzed reaction
of 29 in the presence of methanol providedtrans-cyclopentane38
accompanied by a minor amount ofcis-cyclobutane30 (eq 3).12,13

We propose the sequence outlined in Scheme 1 as the likely
mechanism for the gold(I)-catalyzed reaction. Addition of the

Table 1. Au(I)-Catalyzed [2 + 2]-Cycloaddition of Allenenesa

a Reaction conditions: 0.1 M allenene in CH2Cl2, 5 mol % of Ph3PAuCl,
5 mol % of AgBF4, rt. b Isolated yield after chromatography.c 0.1 M
CH3NO2, 10 h, rt.
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nucleophilic alkene to gold(I)-activated allene39 results in the
formation of a carbocationic intermediate.14 In the presence of
methanol, kinetically formed carbocation40 is trapped to givetrans-
cyclopentane41. That the cyclopentane stereochemistry of the
methanol adduct is opposite to that of the cyclobutane product
implies that the initial cyclization is reversible.15,16 Therefore, in
the absence of an exogenous nucleophile, the reaction proceeds
throughcis-disubstituted intermediate42. Cyclobutane43 is then
formed from reaction of the vinyl-gold with the benzylic carboca-
tion.

In conclusion, we have developed the first transition-metal-
catalyzed cycloisomerization of allenenes to alkylidene-cyclobu-
tanes.17,18 The [2 + 2]-cycloaddition reaction provides access to
enantioenriched bicyclo-[3.2.0] structures using chiral biarylphos-
phinegold(I) complexes as catalysts.19 In accord with the mecha-
nisms of previously reported gold(I)-catalyzed cycloisomerizations,
the reaction is proposed to proceed through a series of cationic
intermediates. In gold-catalyzed enyne cycloisomerization reactions,
the interaction of theâ-carbon of the vinyl-gold species with a
carbocation results in the formation of gold(I)-stabilized cyclopro-
pylcarbinyl cation.2,12 In contrast, the results reported herein suggest
that, when this type of resonance-stabilized cation is not available,
vinyl-gold species preferentially react with electrophiles to sub-
stitute the carbon-gold bond.5,20Further studies on this mechanistic
dichotomy are ongoing and will be reported in due course.
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Table 2. Enantioselective Au(I)-Catalyzed [2 + 2]-Cycloadditiona

a Reaction conditions:28 (3 mol %), AgBF4 (6 mol %), DCM (0.1 M),
4 °C. b Isolated yield after chromatography.c Reaction run at rt.

Scheme 1. Proposed Mechanism of [2 + 2]-Cycloaddition
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